- Home
- Search Results
- Page 1 of 1
Search for: All records
-
Total Resources2
- Resource Type
-
0002000000000000
- More
- Availability
-
20
- Author / Contributor
- Filter by Author / Creator
-
-
Ahmad, Maaz_Bin Safeer (2)
-
Adams, Andrew (1)
-
Jones, Benjamin (1)
-
Kamil, Shoaib (1)
-
Kim, Vladimir (1)
-
Kodnongbua, Milin (1)
-
Ragan-Kelley, Jonathan (1)
-
Root, Alexander J (1)
-
Schulz, Adriana (1)
-
Sharlet, Dillon (1)
-
#Tyler Phillips, Kenneth E. (0)
-
#Willis, Ciara (0)
-
& Abreu-Ramos, E. D. (0)
-
& Abramson, C. I. (0)
-
& Abreu-Ramos, E. D. (0)
-
& Adams, S.G. (0)
-
& Ahmed, K. (0)
-
& Ahmed, Khadija. (0)
-
& Aina, D.K. Jr. (0)
-
& Akcil-Okan, O. (0)
-
- Filter by Editor
-
-
& Spizer, S. M. (0)
-
& . Spizer, S. (0)
-
& Ahn, J. (0)
-
& Bateiha, S. (0)
-
& Bosch, N. (0)
-
& Brennan K. (0)
-
& Brennan, K. (0)
-
& Chen, B. (0)
-
& Chen, Bodong (0)
-
& Drown, S. (0)
-
& Ferretti, F. (0)
-
& Higgins, A. (0)
-
& J. Peters (0)
-
& Kali, Y. (0)
-
& Ruiz-Arias, P.M. (0)
-
& S. Spitzer (0)
-
& Sahin. I. (0)
-
& Spitzer, S. (0)
-
& Spitzer, S.M. (0)
-
(submitted - in Review for IEEE ICASSP-2024) (0)
-
-
Have feedback or suggestions for a way to improve these results?
!
Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher.
Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?
Some links on this page may take you to non-federal websites. Their policies may differ from this site.
-
Root, Alexander J; Ahmad, Maaz_Bin Safeer; Sharlet, Dillon; Adams, Andrew; Kamil, Shoaib; Ragan-Kelley, Jonathan (, ACM)Modern vector processors support a wide variety of instructions for fixed-point digital signal processing. These instructions support a proliferation of rounding, saturating, and type conversion modes, and are often fused combinations of more primitive operations. While these are common idioms in fixed-point signal processing, it is difficult to use these operations in portable code. It is challenging for programmers to write down portable integer arithmetic in a C-like language that corresponds exactly to one of these instructions, and even more challenging for compilers to recognize when these instructions can be used. Our system, Pitchfork, defines a portable fixed-point intermediate representation, FPIR, that captures common idioms in fixed-point code. FPIR can be used directly by programmers experienced with fixed-point, or Pitchfork can automatically lift from integer operations into FPIR using a term-rewriting system (TRS) composed of verified manual and automatically-synthesized rules. Pitchfork then lowers from FPIR into target-specific fixed-point instructions using a set of target-specific TRSs. We show that this approach improves runtime performance of portably-written fixed-point signal processing code in Halide, across a range of benchmarks, by geomean 1.31× on x86 with AVX2, 1.82× on ARM Neon, and 2.44× on Hexagon HVX compared to a standard LLVM-based compiler flow, while maintaining or improving existing compile times.more » « less
An official website of the United States government
